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Abstract: Severe acute respiratory syndrome-related coronavirus (SARS-CoV-2) is detectable in saliva
from asymptomatic individuals, suggesting a potential benefit from the use of mouth rinses to sup-
press viral load and reduce virus spread. Published studies on the reduction of SARS-CoV-2-induced
cytotoxic effects by mouth rinses do not exclude antiseptic mouth rinse-associated cytotoxicity. Here,
we determined the effect of commercially available mouth rinses and antiseptic povidone-iodine
on the infectivity of replication-competent SARS-CoV-2 viruses and of pseudotyped SARS-CoV-2
viruses. We first determined the effect of mouth rinses on cell viability to ensure that antiviral activity
was not a consequence of mouth rinse-induced cytotoxicity. Colgate Peroxyl (hydrogen peroxide)
exhibited the most cytotoxicity, followed by povidone-iodine, chlorhexidine gluconate (CHG), and
Listerine (essential oils and alcohol). The potent antiviral activities of Colgate Peroxyl mouth rinse
and povidone-iodine were the consequence of rinse-mediated cellular damage when the products
were present during infection. The potency of CHG was greater when the product was not washed
off after virus attachment, suggesting that the prolonged effect of mouth rinses on cells impacts
the antiviral outcome. To minimalize mouth rinse-associated cytotoxicity, mouth rinse was largely
removed from treated viruses by centrifugation prior to infection of cells. A 5% (v/v) dilution of
Colgate Peroxyl or povidone-iodine completely blocked viral infectivity. A similar 5% (v/v) dilution
of Listerine or CHG had a moderate suppressive effect on the virus, but a 50% (v/v) dilution of
Listerine or CHG blocked viral infectivity completely. Mouth rinses inactivated the virus without
prolonged incubation. The new infectivity assay, with limited impacts of mouth rinse-associated
cytotoxicity, showed the differential effects of mouth rinses on SARS-CoV-2 infection. Our results
indicate that mouth rinses can significantly reduce virus infectivity, suggesting a potential benefit for
reducing SARS-CoV-2 spread.

Keywords: mouth rinses; antiseptics; SARS-CoV-2

1. Introduction

Severe acute respiratory syndrome-related coronavirus (SARS-CoV-2), a non-segmented
positive-strand RNA enveloped virus, is the causative agent of coronavirus disease 19
(COVID-19). As of February 2021, COVID-19 spread has resulted in more than 111 million
cases worldwide and more than 28 million cases in the United States alone [1,2]. SARS-CoV-
2 particles have a spherical shape with diameters ranging from 60–140 nm and are coated
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with 9–12 nm spike proteins together with the envelope and membrane proteins, which
are embed in a lipid-bilayer viral envelope [3]. Inside the envelope, the single-stranded
positive-sense viral RNA is associated with nucleocapsid proteins [4,5]. Targeting viral
components, including the membrane (envelope), surface spike proteins, and nucleic acids,
to inactive viruses may reduce transmission. Evidence indicates that transmission of SARS-
CoV-2 occurs through virus-containing secretions, such as saliva and respiratory secretions,
or their droplets [6]. Salivary SARS-CoV-2 viral load is highest during the first week after
symptom onset [7], and individuals with SARS-CoV-2 infection shed virus and can remain
asymptomatic for a prolonged period [8,9], highlighting the importance of developing a
strategy to prevent virus spread in the general population. Additionally, there is an urgent
need for evidence-based practices to protect patients and healthcare workers in the dental
office and elsewhere when salivary droplets and aerosols are generated during dental
treatment when masks for patients are not an option.

Antiseptic mouth rinses have been shown to have efficacy in reducing bacteria and
viruses in the oral cavity and in dental aerosols [10–12]. The antiseptic Listerine and
chlorhexidine gluconate 0.12% (CHG) have been shown to reduce herpes simplex virus-1
load in saliva after rinsing [13,14]. Potential inhibitory effects of mouth rinses on SARS-CoV-
2 inactivation have been proposed based on the assumption that the organic components
in the mouth rinses disrupt viral membranes or act on viral proteins [15–17]. Because
viable cells are required for productive infection, toxic effects on cells that may produce
unfavorable conditions for viral infection can be misinterpreted as a potent antiviral activity.
While most commercially available mouth rinses are safe, particularly after dilution in
the oral cavity, their effects on the infectivity of the virus may be overestimated if mouth
rinse-associated cytotoxicity is not considered. Recent studies demonstrated the effect of
mouth rinses and povidone-iodine, a common topical antiseptic, on SARS-CoV-2 infection,
but the studies did not discriminate between the effect of these products on viral infectivity
and their cytotoxic effect on epithelial cells [18–20]. For example, in the study by Bidra
et al., a mixture of SARS-CoV-2 viruses and diluted povidone-iodine was added to Vero
cells for 5 days, followed by determination of the cytopathic effects. The same assay was
conducted by Meister et al., wherein cell viability was determined by crystal violet staining,
a method that does not directly distinguish live and dead cells. Antiseptic-associated cell
death can result in decreased numbers of target cells for viral infection, producing an
apparent decrease in viral infectivity, which can be interpreted as a potent antiviral effect.

Here, we determined the effect of mouth rinses, including Listerine, chlorhexidine
gluconate (CHG), and Colgate Peroxyl, on cell viability prior to assessing their impact
on the infectivity of SARS-CoV-2 viruses. We included povidone-iodine as a comparison
because a published study suggested its use as a mouth rinse [18]. We used replication-
competent SARS-CoV-2 viruses expressing mNeonGreen, which allowed us to monitor
the green signal in live cells within 24 h after infection, which avoided significant virus-
induced cytopathic effects seen at later time points. Importantly, we used a cell imaging
multi-mode reader to monitor viral infection (fluorescent signals) and cell morphology
simultaneously. We also used a single-cycle infection assay using a pseudotyped SARS-
CoV-2 virus expressing SARS-CoV-2 spike proteins, which provides a non-pathogenic
vector for assessing viral infectivity. The pseudotyped virus does not cause virus-induced
cytotoxic effects but allows us to assess SARS-CoV-2 spike protein-mediated viral entry.
Additionally, the assay would be useful for researchers without access to a biosafety Level
3 (BSL3) facility. We tested the effects of serial dilutions of the mouth rinses to determine
their relative effectiveness against the virus directly as opposed to their cytotoxicity against
mammalian cells.

2. Materials and Methods
2.1. Reagents

The infectious-clone-derived SARS-CoV-2 virus (USA_WA1/2020 strain) expressing
mNeonGreen was kindly provided by Pei-Yong Shi at the University of Texas Medical
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Branch, Galveston, TX, USA [21]. A recombinant construct used for infectivity assays
(pseudotyped SARS-CoV-2) was derived from the full-length SARS-CoV-2-Wuhan-Hu-
1 surface (spike) gene (GenBank accession number QHD43416) [22], which was codon
optimized for humans and synthesized with Kozak-START GCCACC ATG and STOP
codons, flanked by 5′ Nhel/3′Apal sites for subcloning into the pcDNA3.1(+) vector
(Thermo Fisher Scientific, USA). HEK293T cells and Vero E6 cells were purchased from
American Type Culture Collection (ATCC), Manassas, VA, USA. Monoclonal antibody (Ab)
against SARS-CoV-2 spike protein (IgG1 clone#43, Cat # 40591-MM43) was purchased from
Sino Biological, Inc. (Wanye, PA, USA). Listerine Original (Johnson & Johnson Consumer
Inc., Skillman, NJ, USA), povidone-iodine 10% (1% available iodine, CVS Pharmacy Inc.,
Woonsocket, RI, USA), Colgate Peroxyl (1.5% w/v hydrogen peroxide, Colgate-Palmolive
Inc., New York, NY, USA), and chlorhexidine gluconate 0.12% (Xttrium Laboratories Inc.,
Mount Prospect, IL, USA) (Table 1) were purchased from a local pharmacy.

Table 1. Mouth rinse and antiseptic products used in this study.

Products Manufacturers Active Ingredients

Listerine Antiseptic Original Johnson & Johnson Consumer Inc., Skillman, NJ, USA

20–30% ethanol
Thymol 0.064%

Methyl salicylate 0.06%
Menthol (racementhol) 0.042%

Eucalyptol 0.092%

Chlorhexidine gluconate Xttrium Laboratories Inc., Mount Prospect, IL, USA 0.12% chlorhexidine

Colgate Peroxyl Colgate-Palmolive Inc., New York, NY, USA 1.5% w/v hydrogen peroxide

Povidone-iodine CVS Pharmacy Inc., Woonsocket, RI, USA 10% solution
(1% available iodine)

2.2. Cell Culture

HEK293T cells and human angiotensin-converting enzyme 2 (hACE2)-expressing
HeLa cells (kindly provided by Dennis Burton, The Scripps Research Institute, La Jolla, CA,
USA) [23] were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented
with 10% fetal bovine serum (FBS). Vero E6 cells were cultured in Eagle’s Essential Minimal
Medium (EMEM) with 5% FBS. TR146 cells were cultured in Ham’s F12 medium with
glutamate and 10% FBS. DMEM, EMEM, Ham’s F12, and FBS were purchased from
Millipore-Sigma (St. Louis, MO, USA). The choices of culture media were based on ATCC
recommendations. Cell lines were maintained using standard tissue culture procedures.

2.3. Viral Infection

Infection assays are summarized in Supplementary Figure S1. Replication-competent
SARS-CoV-2 viruses expressing mNeonGreen were propagated in Vero E6 cells as described
previously [21]. All experiments were performed in a BSL3 laboratory. Powered air-
purifying respirators (Breathe Easy, 3M), Tyvek suits, aprons, sleeves, booties, and double
gloves were worn. Virus titers were determined by plaque assays. Briefly, Vero E6 cells
were seeded at 6 × 105 cells per well in a 6-well plate and cultured overnight. Cells
were then exposed to serial dilutions of SARS-CoV-2 viruses for 1.5–2 h. After removing
unbound viruses, cells were overlaid with 0.8% Agarose LE (Millipore-Sigma, St. Louis,
MO, USA) in DMEM with 2% FBS. On post-infection Day 3, cells were fixed with 10%
formaldehyde (in phosphate buffered saline (PBS) for 30 min. Agarose plugs were removed
and fixed cells were stained with 0.2% crystal violet (w/v) in ethanol.

For the infection assay, Vero E6 cells at 1 × 104 cells per well were incubated overnight
in black 96-well glass bottom plates (Greiner Bio-One, Monroe, NC, USA). Cells were
exposed to treated or untreated viruses in 50 µL at a multiplicity of infection (MOI) of 5
for 1 h followed by the addition of 100 µL FluoroBrite medium containing 2% FBS. The
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fluorescence signals from productive viral infection and cell images were monitored at 24 h
after infection using a Biotek Cytation 5 (Winooski, VT, USA).

For single-cycle infection assays, replication-defective Human Immunodeficiency
Virus (HIV)-1 luciferase-expressing reporter viruses pseudotyped with SARS-CoV-2 spike
(S) proteins were produced by co-transfection of a plasmid encoding the envelope-deficient
HIV-1 NL4-3 virus with the luciferase reporter gene (pNL4-3.Luc.R+ E-, kindly provided
by Nathaniel Landau, New York University) and a pcDNA3.1 plasmid expressing the
SARS-CoV-2 glycoprotein into HEK293T cells using Lipofectamine 3000 (Thermo Fisher
Scientific, Waltham, MA, USA). The supernatant was collected 48 h after transfection and
filtered. Virus stocks were analyzed for the HIV-1 p24 antigen by the AlphaLISA HIV
p24 kit (PerkinElmer, Waltham, MA, USA) on a 2300 EnSpire Multilabel Plate Reader
(PerkinElmer) according to the manufacturer’s instruction. Virus stocks contained approxi-
mately 200 ng/mL of HIV p24 protein.

For infection assays, cells were seeded at 5 × 104 cells/well in a 48-well plate and
cultured overnight. Pseudotyped SARS-CoV-2 luciferase reporter viruses were incubated
with or without mouth rinse for 30 min at 37 ◦C before being added to HeLa-hACE2
cells. After 1–2 h viral attachment, infected cells were cultured in media with 10% FBS
for 48–72 h. Cells were then lysed in a 1× passive lysis buffer (Promega Inc., Madison,
WI, USA), followed by measuring luciferase activity (relative light units; RLUs) using
Luciferase Substrate Buffer (Promega Inc.) on a 2300 EnSpire Multilabel Plate Reader.

To assess the effect of mouth rinses on the viruses, mouth rinse-treated SARS-CoV-2
viruses were concentrated by centrifugation at 14,000 rpm in a centrifuge (Eppendorf) at
4 ◦C for 2 h as described previously [24]. After removing the mouth rinses or medium
(control samples), virus pellets were resuspended in DMEM and used to infect HeLa-
hACE2 cells. Infection was determined by measuring fluorescence intensity after 24 h for
replication-competent viruses or luciferase activity after 48 h for pseudotyped viruses.

2.4. Cytotoxicity Assay

HeLa-hACE2 and TR146 cells were plated in 96-well plates at 5000 cells per well
and then treated with various dilutions of mouth rinses for the times indicated in the
figure legends. Each treatment was performed in triplicate. Cell viability was analyzed
using the CellTiter 96 AQueous One Solution Cell Proliferation Assay (Promega, Madi-
son, WI, USA) according to the manufacture’s instruction. The signal was recorded as
absorbance at 490 nm on a 96-well plate reader. The assay reagent contains a tetrazolium
compound (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-
2H-tetrazolium, inner salt; MTS) and an electron coupling reagent (phenazine ethosulfate;
PES) to measure metabolically active cells.

2.5. Statistical Analysis

Statistical comparisons were performed using one-way ANOVA with Dunnett’s multi-
ple comparisons test. Prism 8 (GraphPad Software, LLC, Sand Diego, CA, USA) was used.
p < 0.05 was considered significant.

3. Results
3.1. Differential Effects of Mouth Rinses on Cell Viability

It is critical to assess antiviral agents under non-cytotoxic conditions, as viruses depend
on viable host cells for productive infection. Therefore, we first determined the effect of
preincubation with mouth rinses on cell viability. Cells were exposed to mouth rinses
for 20 s or for 2 h to simulate the immediate action of mouth rinses in the oral cavity
and the in vitro viral infection assay, respectively. We then assessed the effect of mouth
rinses on viruses with or without preincubation. Note that percentage dilutions (v/v) of
commercial mouth rinse products are referenced in this study. For example, in Figure 1,
50% (v/v) CHG represents a solution composed of equal volumes of culture media and of
the commercial product, and does not indicate the final concentration of active ingredients.
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HeLa-hACE2 cells were treated with serial dilutions in medium of Listerine, CHG, Colgate
Peroxyl, or povidone-iodine for 20 s, washed, cultured in fresh media, and cell viability
was determined. All undiluted mouth rinses (100% v/v) were highly toxic to HeLa-hACE2
and oral epithelial cells (Figure 1). Listerine was the least cytotoxic, followed closely by
CHG. Both 1.5% (v/v) dilutions of Colgate Peroxyl and povidone-iodine were highly toxic
to cells.
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Figure 1. The effect of short-term exposure to mouth rinses on the viability of HeLa-hACE2 and oral epithelial cells. Human
angiotensin-converting enzyme 2 (hACE2)-expressing HeLa cells (A) and oral epithelial TR146 cells (B) were treated for
20 s with different dilutions (v/v) of products including Listerine, chlorhexidine gluconate (CHG), Colgate Peroxyl, or
povidone-iodine. Cells were washed and cultured with fresh medium immediately. Cell viability was determined by
the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS)-based
CellTiter 96 AQueous One Solution Cell Proliferation Assay. Data are means ±SD of three samples. The significance of
differences between mouth rinse-treated cells and mocked-treated controls was compared; * p < 0.05.

Infection requires 2 h viral attachment. We then determined the effect of 2 h exposure
of mouth rinses on cell viability for comparison with the duration of viral attachment in the
infection assay. We found that 6.3% (v/v) diluted Listerine and 1.5% (v/v) diluted CHG did
not impact cell viability, whereas 0.1% (v/v) diluted Colgate Peroxyl or povidone-iodine
significantly affected cell viability after 2 h exposure (Figure 2).

3.2. Antiviral Effect of Diluted Povidone-Iodine or Colgate Peroxl Was Associated with Cytotoxicity

Previous studies on the effect of antiseptics on SARS-CoV-2 infection used meth-
ods involving virus-induced cytopathic effects without excluding mouth rinse-associated
cytotoxic effects [18–20]. To examine this more closely, we assessed the effect of highly
diluted mouth rinses and povidone-iodine on replication-competent SARS-CoV-2 viruses
without washing off the antiseptics; cell morphology was monitored as a crude measure of
cytopathic effects. Viruses were treated with non-cytotoxic dilutions of Listerine and CHG,
highly dilute Colgate Peroxyl, and low cytotoxic dilutions of povidone-iodine (Figure 2),
and were immediately added to Vero cells. Additional media were added 2 h after in-
fection, and cells were cultured overnight. The fluorescence intensity from SARS-CoV-2
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infection was determined, and cell morphology was imaged at 24 h after infection. Diluted
Listerine (3% v/v) reduced SARS-COV-2 infection by 40%, and CHG (1.5% v/v) reduced
infection by 70%, without apparent impacts on cell morphology (Figure 3). Diluted Colgate
Peroxyl (0.05% v/v) and povidone-iodine (0.1% v/v) appeared to have potent antiviral
activities; however, disruption of cell morphology was apparent (Figure 3), indicating that
the putative antiviral effect of these two agents was likely a consequence of cytotoxicity.
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Figure 2. The effect of prolonged exposure to mouth rinses on cell viability. hACE2-expressing HeLa cells were treated for
2 h with serial dilutions of products including Listerine (A), CHG (B), Colgate Peroxyl (C), or povidone-iodine (D) starting
at 50% (v/v), except povidone-iodine, which was started at 6.25% (v/v). Cell viability was determined by the MTS-based
CellTiter 96 AQueous One Solution Cell Proliferation Assay. Data are means ±SD of three samples and are representative
of two independent experiments. The significance of differences between mouth rinse-treated cells and mocked-treated
controls was compared; * p < 0.05.

We also used HIV pseudotyped luciferase virus particles expressing SARS-CoV-2
surface protein (spike, S) to assess the effect of non-cytotoxic diluted Listerine and CHG on
viral infectivity. Unlike replication competent SARS-CoV-2 virus, which induces cytopathic
effects after prolonged culture, HIV pseudotyped luciferase viruses provide a reliable,
non-pathogenic vector for assessing viral infectivity. We confirmed that infection by pseu-
dotyped SARS-CoV-2 was dependent on human hACE2, and that infection was neutralized
by the anti-spike monoclonal antibody (Supplementary Figure S2). We determined the
effect of diluted Listerine (1.5–6% v/v) and CHG (1.5% and 3% v/v), which had no or
little effect on cell viability (Figure 2), on pseudotyped SARS-CoV-2 virus infection with-
out washing off the mouth rinses during the infection. We found that 6% (v/v) Listerine
had moderate anti-SARS-CoV-2 activity, whereas 1.5% or 3% (v/v) CHG suppressed viral
infection by 88% and 97%, respectively (Figure 4A).
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Figure 3. Effect of diluted antiseptics on infection by replication-competent severe acute respiratory syndrome-related
coronavirus (SARS-CoV-2) virus when antiseptics were present in the culture. (A) Replication competent virus SARS-
CoV-2 expressing mNeonGreen (multiplicity of infection (MOI) of 5) were mixed or not with Listerine (3%), CHG (1.5%),
povidone-iodine (0.1%), or Colgate Peroxyl (0.05%), and immediately added (in 50 µL) to Vero cells and incubated 1 h
for viral attachment. Antiseptics were diluted by the addition of 100 µL of the medium to reduce potential toxic effects.
Fluorescence intensity derived from productive viral infection was determined at 24 h after infection. (B) Cell images were
acquired on a Bioteck Cystatin 5 plate reader. Differences between mouth rinse-treated viruses and the medium control (0%)
were compared; * p < 0.05. Data are means ±SD and are representative of three independent experiments.
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Figure 4. Effect of non-cytotoxic dilutions of Listerine and chlorhexidine gluconate on infection by pseudotyped SARS-CoV-
2 viruses. (A) Pseudotyped SARS-CoV-2 virus (100 µL) was incubated with or without non-cytotoxic dilutions of Listerine
or CHG at 37 ◦C for 30 min and then added to HeLa-hACE2 cells. After 1–2 h incubation, an additional 400 µL of Dulbecco’s
Modified Eagle’s Medium (DMEM) 10% fetal bovine serum (FBS) was added to the cells without washing off the viruses or
mouth rinses. Infected cells were cultured in the presence of mouth rinses for 2 days before measuring luciferase activity.
(B) Pseudotyped SARS-CoV-2 viruses were pre-incubated with diluted CHG at 37 ◦C for 30 min (left panel) or without
30 min preincubation (right panel). Treated viruses were added to HeLa-hACE2 cells and incubated for 1 h at 37 ◦C. Cells
were washed to remove residual mouth rinse and cultured for 2 days before measuring luciferase activity. The significance
of differences between mouth rinse-treated viruses and mocked-treated controls (0%) was compared; * p < 0.05. Data are
means ± SD.

We also determined whether preincubation of viruses with CHG affected the degree
of antiviral activity. For this, pseudotyped SARS-CoV-2 viruses were pretreated or not
with CHG for 30 min at 37 ◦C before being added to target cells. In contrast to the
experiment shown in Figure 4A, in which the mouth rinses were present during infection,
here, the mixture of virus and CHG was removed, fresh medium was added, and cells
were cultured for 2 days before measuring luciferase activity (Figure 4B). The effect of
CHG with or without preincubation was comparable (Figure 4B). We found that the
antiviral effect of 1.5% (v/v) CHG was less potent when CHG was present only during viral
attachment (Figure 4B) compared with being continuously present during viral infection
and incubation for 2 days (Figure 4A). The more pronounced antiviral activity of 1.5% (v/v)
CHG in this experiment may be due to the effects of prolonged contact with CHG on the
target cells, indicating the importance of minimizing mouth rinse-associated cytotoxicity
in the infection assay.

3.3. Direct Effect of Mouth Rinses on Viruses

To assess the direct effects of the rinses on virus particles, pseudotyped SARS-CoV-2
viruses were incubated with mouth rinses for 30 min at 37 ◦C and were pelleted by cen-
trifugation [24] prior to the infection assay. Note that centrifugation per se did not impact
infectivity of the virus (data not shown). After removal of the supernatant containing
the mouth rinse, viruses were resuspended in media and added to HeLa-hACE2 target
cells (Figure 5A,B). We also assessed the effect of centrifugation and virus resuspension
on infectivity and cell viability to monitor the potential cytotoxic effects of residual mouth
rinse on the cells (Figure 5C). Viruses treated with 50% (v/v) Listerine, 50% (v/v) CHG, 50%
(v/v) Colgate Peroxyl, or 5% (v/v) povidone-iodine completely lost infectivity (Figure 5B);
the apparent antiviral effect of 50% (v/v) Colgate Peroxyl was associated with cell toxicity
(Figure 5C). Treatment with 5% (v/v) Listerine or CHG had a moderate antiviral effect,
whereas 5% (v/v) Colgate Peroxyl or 5% (v/v) povidone-iodine completely inactivated
the viruses. All mouth washes at non-cytotoxic levels exhibited antiviral activity. Col-
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gate Peroxyl and povidone-iodine had greater inhibitory effects on the viruses than CHG
or Listerine.
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Figure 5. The effect of mouth rinses on SARS-CoV-2 viruses. (A) Experimental design. Pseudotyped luciferase reporter
viruses expressing SARS-CoV-2 spike proteins were incubated with the indicated dilutions of mouth rinses at 37 ◦C for
30 min, followed by centrifugation and aspiration of the supernatant. Virus pellets were resuspended in the culture
medium and added to HeLa-hACE2 cells for (B) infection assay and for (C) cytotoxicity assay as described in the Methods.
Differences between mouth rinse-treated viruses and media controls (0%) were compared; * p < 0.05. Data are means ± SD
and are representative of two independent experiments.

Unlike high concentrations of Colgate Peroxyl and povidone-iodine, whose antiviral
activities were associated with cytotoxicity, higher concentrations of Listerine and CHG
exhibited potent antiviral effects without cytotoxicity. We asked whether preincubation of
the virus with Listerine or CHG was required to achieve their direct effect on the virus.

Mouth rinses were added to the virus, mixed, and immediately centrifuged at 4 ◦C.
Supernatants containing the mouth rinses were discarded. Viruses were then resuspended
in media and added to target cells. The viral inhibition profiles of Listerine and CHG
without preincubation (Supplementary Figure S3) were comparable to those with 30 min
incubation (see Figure 5B).

We further confirmed the direct effect of mouth rinses on SARS-CoV-2 viral infectivity
using replication-competent viruses expressing mNeonGreen. Note that there was no
preincubation of viruses with mouth rinses. Similar to the results using pseudotyped
viruses expressing spike proteins, 50% (v/v) Listerine, 50% (v/v) CHG, 5% (v/v) Colgate
Peroxyl, and 5% (v/v) povidone-iodine significantly blocked viral infectivity; 0.5% (v/v)
povidone-iodine was not active against the virus, whereas 0.5% (v/v) Colgate Peroxyl had
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moderate antiviral activity; 5% (v/v) Listerine and 5% (v/v) CHG had a moderate antiviral
effect (Figure 6A,B). In contrast to infected cells with exposure to highly diluted Colgate
Peroxyl and povidone-iodine during the infection, which was associated with cell death
(Figure 3), there was no apparent cell death in cells infected by viruses after the removal of
mouth rinses by centrifugation. Taken together, Listerine and CHG blocked SARS-CoV-2
viral infectivity with minimal cytotoxicity, whereas highly diluted Colgate Peroxyl and
povidone-iodine significantly inactivated viruses but their antiviral effects were associated
with severe cytotoxicity.
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Figure 6. The effect of mouth rinses on replication-competent SARS-CoV-2 viruses. (A) Mouth rinses and povidone-iodine at
the indicated dilutions were added to replication-competent SARS-CoV-2 expressing mNeonGreen (1 × 106 plaque-forming
units). Treated and untreated viruses were immediately pelleted by centrifugation, and the supernatant was aspirated. Virus
pellets were resuspended in Fluorobrite medium with 2% FBS and added to Vero cells. Viral infection was determined by
measuring fluorescence intensity at 24 h after infection. (B) Images of infected cells with or without mouth rinse treatment
were acquired when the plate was read. Differences between mouth rinse- and medium control (0%)-treated viruses were
compared; * p < 0.05. Data are means ± SD and are representative of two independent experiments.
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4. Discussion

Unlike SARS-CoV (SARS) and Middle East Respiratory Syndrome (MERS)-CoV, which
caused thousands of cases and 700–800 deaths, SARS-CoV-2 appears to be more highly
transmissible [25]. The SARS-CoV-2 virus is detectable in saliva from infected individuals
without symptoms or with mild symptoms [26], suggesting that a strategy of suppressing
the viral load in the oral cavity may reduce viral spread. Indeed, results from in silico
and in vitro studies suggest the potential use of mouth rinses to reduce SARS-CoV-2
spread [15–17]. Previous studies were conducted to assess the antiseptic effect of povidone-
iodine on several respiratory viruses, including SARS-CoV, MERS-CoV, and influenza A
subtype H1N1, using virus-mediated cytopathic effects [27]; however, they did not exclude
possible antiseptic-associated cytotoxicity. Similarly, published data on the effect of mouth
rinses on SARS-CoV-2 infection did not distinguish the impact of mouth rinses on cell
viability in efforts to determine the direct effects of mouth rinses on viral infection [18–20].
The apparent effective dosing of the antiseptic rinse on viral infectivity can be misleading
when the putative antiviral effect is accompanied by a cytotoxic effect. Our experiments
were designed to discriminate between the cytotoxic effects of the mouth rinses and the
effects of the rinses on the infectivity of the virus. Indeed, we found that the antiviral
effects of highly diluted Colgate Peroxyl and povidone-iodine were the consequence of
cytotoxicity when the agents were present during a 24 h infection assay. We obtained similar
results using both replication-competent viruses and pseudotyped SARS-CoV-2 viruses,
indicating the reproducibility of the assays. Our results point to the need to distinguish
between cytotoxicity and antiviral activity for in vitro analysis (e.g., by removing excess
mouth rinse before infection). Our assays, in which the virus but not the infected cells were
exposed to mouth rinses (Figures 5 and 6), differed from previous studies [18–20], in which
infected cells were exposed to mouth rinses and antiseptics for several days.

All mouth rinses tested (all products diluted 1:1 with culture medium, 50% v/v) had
cytotoxic effects on cells. We found the cytotoxicity of Colgate Peroxyl > povidone-iodine >
CHG > Listerine. Similar trends were observed in both HeLa-hACE2 and oral epithelial
cells. Mouth rinse-induced cytotoxicity was more pronounced in cells with 2 h incubation
than with 20 s incubation. When CHG was present during a 2-day infection period, 1.5
and 3% (v/v) CHG suppressed SARS-CoV-2 infection by nearly 99% (Figure 4). However,
1.5% (v/v) CHG was less potent when the mouth rinse was only present during viral
attachment. Importantly, when assessing the effect of CHG on the viruses after removal of
the mouth rinse during the infection, 5% (v/v) CHG had only a moderate effect, reducing
infection by 35–55%. Similarly, the potent “antiviral” effects of 0.1% (v/v) povidone-
iodine and 0.05% (v/v) Colgate Peroxyl that were observed when antiseptics were present
during infection were found by cell image analysis to be due to antiseptic-associated
cytotoxicity (Figure 3). In fact, we found that 0.5% (v/v) povidone-iodine had little effect on
either replication competent or pseudotyped viruses if the povidone-iodine was removed
from the virus before infection (Figures 5 and 6). Our results show the importance of
considering the potential cytotoxicity of putative antiviral agents when assessing their
antiviral activities. Despite our finding that commercially available mouthwashes had
some degree of cytotoxicity, these formulations are well tolerated in clinical use. The ability
to determine the antiviral effects of these mouth washes independent of their cytotoxicity
is important, however, for translating these laboratory results into clinical studies.

Both 5% (v/v) Colgate Peroxyl and 5% (v/v) povidone-iodine inactivated the virus
effectively, whereas 50% Listerine and 50% CHG were required to inactivate the virus. We
found that preincubation with mouth rinses was not required for their antiviral activities,
indicating that the effect of mouth rinses on the virus occurs rapidly on contact. Deter-
mination of the antiviral activity of diluted mouthwash is important, since the salivary
flow in the oral and pharyngeal cavities will dilute the activity following application.
Thus, assessing the effects of highly dilute mouth rinses over time may help establish the
frequency of rinsing necessary for optimal clinical benefits.
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The differential antiviral and cytotoxicity profiles of these mouth rinses suggest that
their antiviral mechanisms are not all the same. The underlying mechanism of the an-
tiviral activity of mouth rinses and their active ingredients remains to be determined,
although potential mechanisms by which mouth rinses inhibit SARS-CoV-2 have been
the subject of speculation. In silico and in vitro studies have suggested the potential use
of mouth rinses to reduce SARS-CoV-2 spread [15–17]. The active compounds in mouth
rinses may block infection by altering/disrupting viral envelopes (membranes), nucleic
acids, and viral proteins (Figure 7). For example, the key ingredient in Colgate Peroxyl is
hydrogen peroxide, which is known to increase cell membrane permeability and cause
DNA damage [28,29]. Hydrogen peroxide may inactivate viruses through lipid oxidation
and/or nucleic acid damage. Povidone-iodine blocks influenza A virus by acting on the
viral glycoproteins hemagglutinin and neuraminidase, resulting in the inhibition of the
binding of virus to cells [30]. Chlorhexidine, a cationic molecule, reduces the infectivity
of enveloped viruses, such as HIV and respiratory syncytial virus, and non-enveloped
viruses, such as rotavirus and hepatitis A virus [31], suggesting that its action is not simply
mediated through membrane disruption. Listerine, an essential oil-based mouth rinse, has
been shown to inhibit infection by HIV and herpes simplex virus 1 [32], and may reduce
the infectivity of viruses through altering the hydrophobicity of the viral glycoproteins
necessary for viral attachment.
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Figure 7. Potential mechanisms of the anti-SARS-CoV-2 activity of mouth rinses. Mouth rinses may inhibit SARS-CoV-2
infection by disruption of the viral envelope and viral nucleic acid, alteration of glycoprotein structure, blocking viral
attachment to glycosaminoglycans on cell surface through changing charges on glycoproteins, and inhibiting the binding of
SARS-CoV-2 spike proteins to angiotensin-converting enzyme 2 (ACE 2) receptors.

In conclusion, all mouth rinses tested inactivated replication-competent SARS-CoV-2
viruses and pseudotyped viruses expressing spike proteins. The cytotoxic effects of mouth
rinses should be considered when assessing their antiviral activities. Since diluted Listerine
and CHG exhibited no cytotoxic effects, these products may be good candidates to reduce
virus spread. Studies of the antiviral effects of mouth rinses are needed for determining
their clinical efficacy in reducing virus spread, particularly in asymptomatic individuals.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-081
7/10/3/272/s1. Figure S1: A workflow diagram of infection assays used in the study, Figure S2: HIV
pseudotyped virus expressing SARS-CoV-2 spike proteins, Figure S3: Preincubation of viruses was
not required for the inhibitory effect of mouth rinses.
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